33 research outputs found

    Brains and bytes: Trends in neuromorphic technology

    Get PDF

    Advanced physical modeling of SiOx resistive random access memories

    Get PDF
    We apply a three-dimensional (3D) physical simulator, coupling self-consistently stochastic kinetic Monte Carlo descriptions of ion and electron transport, to investigate switching in silicon-rich silica (SiOx) redox-based resistive random-access memory (RRAM) devices. We explain the intrinsic nature of resistance switching of the SiOx layer, and demonstrate the impact of self-heating effects and the initial vacancy distributions on switching. We also highlight the necessity of using 3D physical modelling to predict correctly the switching behavior. The simulation framework is useful for exploring the little-known physics of SiOx RRAMs and RRAM devices in general. This proves useful in achieving efficient device and circuit designs, in terms of performance, variability and reliability

    Investigation of resistance switching in SiOx RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator

    Get PDF
    We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiOx) RRAMs. We explain the intrinsic nature of resistance switching of the SiOx layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiOx resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells

    Memristors -- from In-memory computing, Deep Learning Acceleration, Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired Computing

    Full text link
    Machine learning, particularly in the form of deep learning, has driven most of the recent fundamental developments in artificial intelligence. Deep learning is based on computational models that are, to a certain extent, bio-inspired, as they rely on networks of connected simple computing units operating in parallel. Deep learning has been successfully applied in areas such as object/pattern recognition, speech and natural language processing, self-driving vehicles, intelligent self-diagnostics tools, autonomous robots, knowledgeable personal assistants, and monitoring. These successes have been mostly supported by three factors: availability of vast amounts of data, continuous growth in computing power, and algorithmic innovations. The approaching demise of Moore's law, and the consequent expected modest improvements in computing power that can be achieved by scaling, raise the question of whether the described progress will be slowed or halted due to hardware limitations. This paper reviews the case for a novel beyond CMOS hardware technology, memristors, as a potential solution for the implementation of power-efficient in-memory computing, deep learning accelerators, and spiking neural networks. Central themes are the reliance on non-von-Neumann computing architectures and the need for developing tailored learning and inference algorithms. To argue that lessons from biology can be useful in providing directions for further progress in artificial intelligence, we briefly discuss an example based reservoir computing. We conclude the review by speculating on the big picture view of future neuromorphic and brain-inspired computing systems.Comment: Keywords: memristor, neuromorphic, AI, deep learning, spiking neural networks, in-memory computin

    Unipolar potentiation and depression in memristive devices utilising the subthreshold regime

    Get PDF
    We present a resistance switching device that exhibits analogue potentiation and depression of conductance under the same voltage polarity. This contrasts with previously studied devices that potentiate and depress under opposite polarities. We refer to this mode of operation as the subthreshold regime due to it occurring at voltage or current biases that are insufficient to produce discrete or non-volatile switching. This behaviour has the potential to reduce the complexity of neuronal and synaptic circuitry in neuromorphic computing by removing the need for voltage pulses of both positive and negative polarities. The characteristically long timescales may also help replicate bio-realistic timings. In this paper, we detail how to induce this unique behaviour, how to tune its properties to a desired response, and finally, we demonstrate one potential application

    Nonideality‐Aware Training for Accurate and Robust Low‐Power Memristive Neural Networks

    Get PDF
    Recent years have seen a rapid rise of artificial neural networks being employed in a number of cognitive tasks. The ever-increasing computing requirements of these structures have contributed to a desire for novel technologies and paradigms, including memristor-based hardware accelerators. Solutions based on memristive crossbars and analog data processing promise to improve the overall energy efficiency. However, memristor nonidealities can lead to the degradation of neural network accuracy, while the attempts to mitigate these negative effects often introduce design trade-offs, such as those between power and reliability. In this work, we design nonideality-aware training of memristor-based neural networks capable of dealing with the most common device nonidealities. We demonstrate the feasibility of using high-resistance devices that exhibit high II-VV nonlinearity -- by analyzing experimental data and employing nonideality-aware training, we estimate that the energy efficiency of memristive vector-matrix multipliers is improved by three orders of magnitude (0.715 TOPs1W10.715\ \mathrm{TOPs}^{-1}\mathrm{W}^{-1} to $381\ \mathrm{TOPs}^{-1}\mathrm{W}^{-1}$) while maintaining similar accuracy. We show that associating the parameters of neural networks with individual memristors allows to bias these devices towards less conductive states through regularization of the corresponding optimization problem, while modifying the validation procedure leads to more reliable estimates of performance. We demonstrate the universality and robustness of our approach when dealing with a wide range of nonidealities

    Thin-film design of amorphous hafnium oxide nanocomposites enabling strong interfacial resistive switching uniformity

    Get PDF
    A design concept of phase-separated amorphous nanocomposite thin films is presented that realizes interfacial resistive switching (RS) in hafnium oxide-based devices. The films are formed by incorporating an average of 7% Ba into hafnium oxide during pulsed laser deposition at temperatures ≤400°C. The added Ba prevents the films from crystallizing and leads to ∼20-nm-thin films consisting of an amorphous HfOx host matrix interspersed with ∼2-nm-wide, ∼5-to-10-nm-pitch Ba-rich amorphous nanocolumns penetrating approximately two-thirds through the films. This restricts the RS to an interfacial Schottky-like energy barrier whose magnitude is tuned by ionic migration under an applied electric field. Resulting devices achieve stable cycle-to-cycle, device-to-device, and sample-to-sample reproducibility with a measured switching endurance of ≥104 cycles for a memory window ≥10 at switching voltages of ±2 V. Each device can be set to multiple intermediate resistance states, which enables synaptic spike-timing-dependent plasticity. The presented concept unlocks additional design variables for RS devices

    CMOS and memristive hardware for neuromorphic computing

    Get PDF
    The ever-increasing processing power demands of digital computers cannot continue to be fulfilled indefinitely unless there is a paradigm shift in computing. Neuromorphic computing, which takes inspiration from the highly parallel, low power, high speed, and noise-tolerant computing capabilities of the brain, may provide such a shift. To that end, various aspects of the brain, from its basic building blocks, such as neurons and synapses, to its massively parallel in-memory computing networks have been being studied by the huge neuroscience community. Concurrently, many researchers from across academia and industry have been studying materials, devices, circuits, and systems, to implement some of the functions of networks of neurons and synapses to develop bio-inspired (neuromorphic) computing platforms
    corecore